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A Chebyshev collocation algorithm is developed to integrate the 
time-dependent Navier-Stokes equations for natural convection flow 
with large temperature differences. The working fluid is assumed to be 
a perfect gas and its thermophysical properties vary with temperature 
according to Sutherland laws. The governing equations do not allow 
for acoustic waves. The generalized Helmholtz and Uzawa operators 
which arise from time discretization are solved iteratively and the per- 
formances of several types of preconditioners and iterative schemes are 
examined. The algorithm is validated by computing almost Boussinesq 
flows and by comparing with previous results obtained with a finite 
difference algorithm. We investigate the effects of the temperature 
difference and of total mass contained within the cavity on the 
transition to unsteadiness in a cavity of aspect ratio 8. It is shown that 
these parameters have, indeed, a significant effect on the value of 
Rayleigh number at which unsteadiness is triggered. We also discuss 
the nature of the time-periodic solution which is obtained for Ra 
slightly supercritical values. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Natural convection in enclosures is an important 
problem of heat transfer literature. It is also a popular 
test problem to test numerical methods to integrate the 
Navier-Stokes equations for recirculating viscous incom- 
pressible fluid flows. In particular, various spectral methods 
have been applied to the classical thermally differentially 
heated cavity in the last decade [l-3]. In most cases, these 
algorithms have treated the Navier-Stokes equations 
under the Boussinesq approximation, that is, in the limit 
of infinitely small temperature differences. The limits of 
validity of the Boussinesq approximation have been 
investigated in [4, 51, for instance. For a fluid such as air, 
this assumption is known to be valid for temperature 
differences smaller than approximately 30K as long as the 
vertical length scale does not exceed a few meters. On the 
other hand, for water, the temperature range over which 
this assumption is valid is much smaller, a few degrees 
only, essentially due to the rapid variation of the physical 

for 2D 

properties such as viscosity or thermal diffusivity with 
temperature. 

Many non-isothermal flows found in nature or engi- 
neering applications are thus clearly out of the range of 
validity of the Boussinesq approximation and this has long 
promoted the development of numerical algorithms to 
deal with buoyant flows generated by large temperature 
differences. 

Several steps can be taken in that direction, the simplest 
being to let the viscosity vary with temperature as was done 
in [6], while retaining the first or higher order expansion of 
density around the reference temperature in the buoyancy 
forces. This procedure is particularly suited for the study of 
non-Boussinesq natural convection in liquids where com- 
pressibility effects are generally negligible compared with 
variations of thermophysical properties with temperature. 
On the other hand, for gases, compressibility effects may 
become important and allowance for variable density with 
temperature and pressure everywhere in the Navier-Stokes 
equations in addition to the variations of thermophysical 
properties must be retained. This results in an increased 
complexity of the governing equations by comparison with 
the Boussinesq case. The choice of an appropriate formula- 
tion and the subsequent numerical solution of the governing 
equations are then major difficulties. 

For most common gases, and for air in particular, it is 
legitimate to assume that the equation of state is given by 
the perfect gas law. One straightforward approach is 
obviously to use the full compressible Navier-Stokes equa- 
tions in primitive variable formulation in which pressure is 
eliminated and replaced by the perfect gas law, as was done 
in [7-93, amongst others. The major difficulty with the 
resulting system of equations is that it describes acoustic 
waves. While these acoustic waves carry only a minute frac- 
tion of the total energy, they, however, propagate at a finite 
value, the speed of sound, which is typically two to three 
orders of magnitude larger than the convective velocities 
carrying the quasi-totality of energy. Therefore CFL 
stability criteria are very restrictive in situations where the 
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typical time scale for the flow to reach steady state is given 
by the time scale needed to damp out internal gravity waves 
as is the case for convective flows in differentially heated 
cavity [lo]. 

We also note that a compressible vector potential- 
vorticity formulation was developed by Leonardi and 
Reizes [ 11, 121 for solving the steady state equations. This 
procedure has the additional complexity with respect to 
the Boussinesq formulation of having to solve an elliptic 
Poisson equation for pressure in order to obtain the density 
from the equation of state. 

Whichever formulation is used, it is clearly very desirable 
to work with equations from which these acoustic waves 
have been eliminated. Such equations were established by 
Rehm and Baum in the invisid case [ 131 and Paolucci [ 161 
derived them in the viscous case. The essence of these equa- 
tions is to split the pressure between a mean value P which 
depends only on time and a hydrodynamic part n which is 
responsible for the satisfaction of the continuity equation. 
These equations are incompressible in nature since the 
equation for I7 is elliptic, but the velocity field is not 
divergence-free. Note that these equations were intuitively 
used by Forester and Emery a long time ago [14], and 
similar types of equations have also long been known to 
meteorologists (e.g., [ 151). 

These equations have since been used in many studies to 
investigate the effects of large temperature differences com- 
pared to the Boussinesq limit [ 17-191. In particular, some 
of Chenoweth and Paolucci’s results [IS] indicate that 
there might be a rather large influence of this parameter on 
the transition to unsteady solutions of the 2D equations in 
vertical differentially heated cavity, for instance. The scheme 
developed by Chenoweth and Paolucci integrates the time- 
dependent equations in primitive variable form. The time 
stepping scheme is explicit and first-order accurate. Spatial 
discretization relies on second-order accurate finite 
difference approximation on non-uniform meshes. Even 
though finite difference discretizations can provide accurate 
solutions provided enough resolution is used, it seems that 
there is room for alternative approaches and, in particular, 
for algorithms based on spectral methods which are known 
to provide “infinite order accuracy” if the solution is smooth 
enough. In particular, spectral methods have been shown to 
perform extremely well for investigating loss of stability of 
natural convection flows in enclosures under the Boussinesq 
approximation (see the conclusions of the GAMM 
workshop [20], for instance). Frohlich and Peyret have 
already developed one such spectral algorithm to integrate 
the non-Boussinesq equations [21, 221, but they have con- 
sidered a 2D configuration with one direction of periodicity 
using products of Chebyshev and Fourier polynomials as 
expansion functions. The aim of this work is to develop an 
algorithm based on the use of Chebyshev collocation 
discretization to integrate the 2D Navier-Stokes equations 

applicable to air in a two-dimensional closed enclosure. 
This algorithm is then used to investigate the influence of 
the temperature difference and of total mass contained in 
the cavity on the transition to unsteadiness in a cavity of 
aspect ratio eight with adiabatic top and bottom walls. 

The paper is organized as follows: in the next section we 
recall the governing equations in dimensionless form. 
Section 3 is devoted to the time discretization scheme. In 
Section 4, we compare several approaches to solve the 
non-constant coefficient Helmholtz equations which arise 
from the time discretization and in Section 5 we deal with 
the treatment of the continuity equation. In Section 6, we 
consider the determination of auxiliary quantities P and 
dP/dt and summarize the different steps of the time-stepping 
procedure. Section 7 is devoted to a validation of the 
scheme, mainly by comparison with some of the results 
by Chenoweth and Paolucci. Applications and results are 
presented in Section 8. 

2. GOVERNING EQUATIONS 

Consider the natural convection flow of a newtonian 
viscous fluid in a two-dimensional rectangular enclosure of 
width L and height H. The fluid is an ideal gas with constant 
specific heat coefficients C, and C, of ratio y = C,/C, equal 
to 1.4. Its thermal conductivity K and molecular viscosity ~1 
are allowed to depend on temperature. The coordinate 
system is defined so that the vertical axis (0~) points 
vertically upwards and the x-axis is horizontal. Constant 
uniform temperatures T, and T, (AT = T, - T, 2 0) are 
imposed at the right and left vertical walls, respectively. The 
top and bottom walls are taken as thermally insulated. 
The dimensionless temperature difference is denoted by 
E = A T/2 T,, , where To is the average temperature 
(T, + T,)/2 which will be used as the reference temperature. 

The physical governing equations are those considered by 
Chenoweth and Paolucci [18]. The equations are made 
dimensionless by introducing the following reference quan- 
tities: L, for length, V,, for velocity, to = Lo/V,, for time, li, 
for the mean pressure, and p0 for density. The reference 
quantities for p, K, and kinematic viscosity v, and thermal 
diffusivity c1 are taken at the reference temperature To. The 
pressure reference P, and density reference p0 verify the 
equation of state P, = C,(y - 1) Top,, so that only one of 
these quantities needs to be specified. Several choices can 
be made as will be seen later. With this set of reference 
quantities, the governing equations in dimensionless form 
read 

~+v.pv=o (1) 
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p ;+ (V .V)V = -Vz+V.r ( > 
-%(P-1)z (2) 

(3) 

(4) 

where t is given by r = p(VV + (VV)‘- i(V. V)Z), z is the 
unit vector in the vertical direction, and g is the modulus 
of gravitational acceleration. ZZ represents the deviation 
from the average pressure and the hydrostatic component 
in the isothermal cavity to the first order in yM* 
(ZZ=(P-P+p,,gz)/p,V~+O(yM*)). Re is a Reynolds 
number based on the reference scales ( = L,, V,,/vO) and Pr is 
the Prandtl number at the reference temperature Pr = vO/uO. 

It was shown by Paolucci [16] that, in the limit E 4 1, 
these equations yield the classical Boussinesq equations. 
This follows from the fact, that for E 6 1, the temperature 
field for the conduction solution varies almost linearly 
between T, = 1 - E and T2 = 1 + E. The mean pressure field 
corresponding to the conservation of initial mass in an 
isothermal cavity at temperature T,, and pressure PO is given 
by P = l/SD (l/T) du, where Q is the computational domain 
(see Section 6). Assuming a linear temperature distribution 
gives P = 2s/ln( 1 + E)/( 1 - E) which in the limit of small E 
gives P= 1 - .s*/3 + 0(s4). If we define a dimensionless 
temperature 0 by T= 1 - 2~0 (0 is the usual dimension- 
less temperature of the Boussinesq equations), then 
p = 1 - 2~0 + 0(s*). Since the isobaric thermal expansion 
coefficient /I = -(l/p)(ap/~YT), for a perfect gas at tem- 
perature To is equal to l/T,, it follows that 2~ = jI AT and 
the first-order E expansion of p = 1 - 2.~0 thus reduces to 
p = 1 - /? AT 0, which is the usual formulation of the 
buoyancy forces in the Boussinesq approximation. Inserting 
these expansions for p and T into the governing equations 
first yields dp/dt = 0 from the energy equation (or P = 1) 
and the Boussinesq equations are then obtained at leading 
order (zeroth order in the continuity and momentum 
equations and first order in the energy equation). 

Natural convection flows are usually chararacterized by a 
Rayleigh number Ra, defined in the Boussinesq limit by 
(gp ATL~/v,a,). This Rayleigh number can equivalently be 
written (2sgLi/v,a,) which thus constitutes the proper 
definition of Ra for natural convection flows driven by large 
temperature differences, This definition of Ra reduces, in the 
Boussinesq limit (E 4 1 ), to the usual Boussinesq Rayleigh 
number. An appropriate velocity scale I’, for highly convec- 
tive flows in fluids of moderate Prandtl numbers is given by 

(v,/L,) Ra”* with L, = L. With this new set of reference 
quantities, the governing equations take the final form: 

p 

(7) 

P=pT. (8) 

In dimensionless coordinates the computational domain 
extends from - i to $ in the x direction and -A/2 to A/2 in 
the vertical direction where A is the vertical aspect ratio of 
the cavity (= H/L). The boundary conditions imposed on 
the walls on the cavity are the no-slip conditions for the 
velocity vector. For the dimensionless temperature T, they 
read 

T(x = - +, z) = 1 + 6; 

l-(x = & z) = 1 -s; (9) 

l3T 

z( 
x, z= *A/2)=0. 

Equations (5)-(8) constitute a system of live equations 
for six independent quantities (in 2D), p, T, U, w, ZZ, and Z! 
The missing equation is given by an integral equation 
governing dpjdt. Taking into account (7), the continuity 
equation (5) also reads 

v.v= V.KVT 1 dP 

(Pr Ra”‘)P yP dt’ 
(10) 

This equation can be integrated over the fluid domain to 
give, using the Gauss formula and taking into account 
boundary conditions on velocity and temperature, 

dp 
dt - A PryRa1j2 jl_:1z(+)t&) 

-+;,z)g(-;,z))dz. (11) 
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The system of equations is closed by the Sutherland laws for 
fluid properties, 

1+ s, K(T) = T312 -. +s, 1 T+ s , P(T)= T312 
T-I-S,’ 

(12) 
k 

where S, =0.648 and S, = 0.368. These laws are 
appropriate for E 60.6 and a large range of T, 
(210K d T, d 673K). In all the sequel, the Prandtl number 
Pr is set to 0.71, corresponding to air. 

3. SPATIAL APPROXIMATION AND 
TIME DISCRETIZATION 

3.1. Spatial Approximation 

The spatial discretization relies on the use of tensor 
products of Lagrangian interpolants at specified collocation 
points to approximate the dependent variables. Let (xi, z,), 
0 < i d L, 0 < j < A4, be one set of collocation points. Any 
2D function f(x, z) which we consider, for convenience of 
notation, defined on the domain [ - 1, l] x [-A, A] is 
thus approximated by a polynomial of PL(x)@PM(z), 
where L and M are the maximum degrees of interpolating 
polynomials of variables x and z, respectively. One then has 

f(X, Z)= 2 f .foLitx) Lj a 2 
0 

(13) 
r=O ,=o 

where f, are the nodal values at (xi, zi) and Li(xk) = 6&, 
where Bik is the Kronecker delta function. One classically 
has Li(x) = P,, I(x)/(x -xi) PL+ l(xi), where P,, 1 (x) is 
the (L + 1) th-degree polynomial with roots (xi, 0 $ i d L). 

For the temperature and velocity components, xi will be 
taken as the Chebyshev Gauss Lobatto points which are the 
roots of (x2 - 1) x T;(x), where T,(x) is the Lth-degree 
Chebyshev polynomial, yielding xi = cos( in/L), 0 d i < L, 
and similarly for zj. The choice of the polynomial space for 
the pressure ZZ will be discussed in Section 4. 

Computing the partial derivatives of f(x, z) with 
respect to x or z thus amounts to differentiating (13) and 
reevaluating the expansion at the same or at another set of 
collocation points. This can be done efficiently on vector 
machines by using fast matrix multiples. Explicit entries for 
the matrices that correspond to the first- and second-order 
partial derivations are available in [25]. 

When the spectral coefficients fi, are needed (i.e., 
the coefficients such that f(x, z) = Cf=o C,“=,f, T,(x) 
T,(z/A)), they are obtained by using the orthogonality 
relationships for the discrete cosine series: 

3.2. Time Discretization 

The time discretization scheme is of finite difference type. 
The use of a Chebyshev collocation method for the spatial 
resolution makes it necessary to resort to an implicit or 
semi-implicit discretization of diffusion terms for reasons of 
stability while the non-linear terms are generally treated 
explicitly. We have chosen to use the scheme proposed by 
Vane1 et al. [3] which combines a second-order backward 
Euler scheme for the viscous terms with an Adam- 
Bashforth-type evaluation of convective terms and 
variable coefficients such as p or rc. When applied to a scalar 
diffusion-advection equation such as 

this second-order scheme reads 

P* 
3f n+1-4fn+fn-1 

2At 
+(pV.Vf)*=V.K*Vfn+‘, (15) 

where the starred notation stands for Adams-Bashforth 
extrapolation g* = 2g” - g”- ‘, where n refers to the time 
t, = n At. 

Equation (15) can be cast as a Helmholtz equation for the 
unknown field f” + ‘, 

(V.K*V-Az)f”+‘=Sf, (16) 

where A(x, z) = 3p*(x, z)/2At. The source term S’is made of 
known quantities at previous time levels S”‘‘-’ = 
(pV.Vf)*+p*((-44f”+f”-‘)/2At). 

When applied to the governing equations (7), (6), (lo), 
this discretization scheme yields three Helmholtz equations 
for the unknown temperature and velocity fields at time 
level n + 1. The velocity components have, furthermore, to 
satisfy the modified continuity equation (lo), which yields a 
generalized Stokes problem: 

(v.K*v-&I) Tnf’=ST (17) 

(V.p”+1V-I,l)u”+1=Ra1/2~+Su (18) 

an”+1 
(V.~“f1V-&Z)w”+1=Ra1i2~+Sw (19) 

au aw n+l ( > ax+& =sD, (20) 
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where 1, = 3p* Pr Ra’12/2At and 1, = 3p”+ I Ra1j2/2At. The 
source terms are respectively given by 

S,=PrRa112(-y($)*+(pV.VT)* 

+&(Tn-‘-4T”) 
> 

Sv=Ra’/’ p”+‘((V-V)V)*+g 
( 

x (v”p’-4v”)+p 
n+‘-1 

2~ Pr ’ > 

(21) 

-P “+‘vs,+~v(p”+‘s,) 

- (v/P+ 1). (vv)* (22) 

(23) 

Within each time step the temperature equation is solved 
first with extrapolated values K* and p*. This allows us to 
compute the new temperature field and, in turn, after 
determination of P and dP/dt (see Section 6), the new 
density and dynamic viscosity fields which are then used in 
the momentum equations. 

We have also examined an alternative discretization 
scheme for the momentum equations which is obtained by 
expanding the term (V . ,u* + ’ VV”+ ‘) which yields 

x (SV - (W)* . (VP~+ ‘)), (24) 

where A, = 3~“~’ Ra1j2/2p”+’ At. 
Given the dependent variables up to time level n, the 

determination of the temperature and velocity field at new 
time level n + 1 requires the solution of three non-constant 
coefficient Helmholtz problems and a Stokes problem. The 
solution of these generalized Helmholtz equation and 
Stokes problem are the subject of Sections 4 and 5, 
respectively. 

4. SOLUTION OF A HELMHOLTZ PROBLEM 

At each time step the temperature field and the velocity 
components are thus obtained from the solution of a 
generalized Helmholtz problem which reads (dropping the 
time index) 

L(f) = Sf (25) 

in Sz = [ - 1, 1 ] x [ -A, A] with Dirichlet or Neumann- 
type boundary conditions on the boundary ,352 of Q. 
Depending upon the formulation which is chosen, the 
operator L is given by 

L(f)=V.aVf-lf (26) 

or 

L(f)=Vzl-if; (27) 

where a(x, z) and n(x, z) are scalar fields which depend on 
space and which satisfy a(x, z) B a, > 0 and Il(x, z) > 0 on 
Q. In the context of time integration of the governing equa- 
tions, a(x, z) typically represents the molecular viscosity or 
the thermal conductivity and 1 varies like spa with 
c = Ra”=/At. Both fields also depend on time through time 
evolution of the temperature field with the result that 
the operators L to be solved change at each time step, 
precluding the use of direct solvers. 

Let L, be the pseudospectral discretization at Chebyshev 
Gauss Lobatto nodes (xi, zi), 0 ,< i 6 L, 0 6 i < h4, of either 
one of the above second-order elliptic partial operator L. 
We consider both Dirichlet boundary conditions for the 
velocity or mixed Dirichlet-Neumann boundary conditions 
for the temperature. For instance, for (26), L, reads 

L,(f) = V . Iuf(a Vf) - ILM(~f )9 (28) 

where I,, stands for the polynomial interpolation at the 
collocation nodes (xi, zi), 0 d id L, 0 < j 6 M. After 
elimination of the boundary conditions, (28) yields a linear 
system for the unknown variables at interior nodes (xi, z,), 
1 d i d L - 1, 1 < j d M - 1. This system is characterized by 
a very large bandwidth of order (LM2- LM), which 
prevents direct solution, except for the constant coefficient 
Helmholtz problem for which an efficient direct solution is 
available, along the lines proposed in [23]. The inversion of 
(28) must therefore be carried out iteratively. When solving 
iteratively a linear system characterized by a matrix J#, it is 
well known that the efficiency of any iterative scheme is 
linked to the condition number K(d) which is generally 
defined as the ratio of the extreme moduli of eigenvalues of 
Jz’. For Chebyshev spatial approximation, K(L,) varies 
like O(L4) which makes it necessary to resort to precondi- 
tioning techniques for an efficient iterative inversion of L,. 
A good preconditioner H must therefore be such that it be 
easily invertible and that the condition number K( H - ‘L,) 
be as close to one as possible. 

In this work, we have considered and tested two possible 
choices for H. The first one is the pseudo-spectral 
approximation of the constant coefficient operator derived 
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from L, by taking integral averages of both scalar fields a 
and A. This preconditioner is noted H, . It is given by 

H,=AdI a 

or 

(29) 

(30) 

depending on the choice (26) or (27). For a scalar field g, the 
average g is defined by: g = (1/4A) ID g(x, z) dx dz. This 
version differs slightly from a similar type of spectral pre- 
conditioning independently proposed in [24]. H, is 
efficiently inverted by the bi-diagonalization algorithm 
[25]. The operation count is 4LM(L + M). This should be 
compared to the number of operations required to evaluate 
the residual which is 4LM( L + M) or 2LM( L + M) for each 
type of approximation (26) or (27), respectively. 

The second preconditioner we have considered is the 
classical live-point finite-differences approximation of L, 
factorized in incomplete LU-5 form with row sum agree- 
ment [25], noted H,,,. With this choice, the operation 
count per iteration merely reduces to the evaluation of the 
residual. Depending on the choice of approximation (26) or 
(27), the operation count per iteration with H, precondi- 
tioning is between two or three times larger than that for 
H R.5’5. The relative performance of either choice of precondi- 
tioning thus depends on the condition numbers K( H 7 ’ Lsp) 
and K( H ;is Ls,,). To solve the Helmholtz equations for the 
velocity components one thus has four possible choices, 
depending on the formulation (26) or (27) and on precondi- 
tioners H, or H,,,. We have compared the condition 
numbers of these four preconditioned operators on a test 
problem closely related to the application envisioned, in 
that the scalar fields a and A correspond to the definition: 

T(x, z) = 1 + 2&0(X, z) 

Q(x,z)= -05x(1 -0.1 xb(x,z)2) 

with b(x, z) = sin(nx) sin(rcz) 

TABLE I TABLE III 

Condition Numbers Corresponding to Dirichlet Boundary Condition Numbers Corresponding to Dirichlet Boundary 
Conditions Conditions 

0 H;‘L, H.&L, 

0 1.167 6.262 
lo2 1.166 3.172 
to4 1.195 1.650 

Note. ~=0.1; L=M=32. 

H,‘L, Hi;&, 

1.0 6.263 
1.239 3.171 
1.380 1.650 

0 H,‘L, Hi&L, H,‘L, Hi.% 

0 3.111 6.304 1.0 6.263 
lo2 3.078 3.675 4.633 3.671 
lo4 3.383 1.777 9.816 1.776 

Note. E = 0.6; L = M= 32. 

TABLE II 

Condition Numbers Corresponding to Dirichlet Boundary 
Conditions 

0 H,‘L, H&L, 

0 1.367 6.254 
lo2 1.365 3.265 
lo4 1.432 1.677 

Note. c=0.2; L=M=32. 

H,‘L2 Hi&L, 

1.0 6.263 
1.543 3.264 
1.919 1.677 

P=2s/ln((l +s)/(l --E)) 

p(x, z) = p/T 

I=$pa 

4x, 2) = 14 T) given by Sutherland law. 

Tables I-III given the condition numbers of H; ‘Li and 
H j& Li, i= 1,2, where L, and L, stand for the Helmholtz 
operators corresponding to (26) and (27), respectively, for 
three different values of E. 

These tables clearly show that formulations (26) and (27) 
are equivalent when preconditioned by HRs5. For small 
values of 0 and of E, H, preconditioning is better than H,,, 
preconditioning even when taking into account the different 
operation count per iteration. This is, furthermore, con- 
firmed by the fact that H, preconditioning is independent 
of spatial resolution, whereas the condition number of 
K( H & Li) increases with increasing spatial resolution. On 
the other hand, for large values of rr’, which is the case in 
practice due to the stability constraint resulting from 
explicit discretization of advection terms, the condition 
number of H tr,‘, Li becomes comparable or even better than 
the condition number of Hi1 Li, in particular for large 
values of E. This shows that H RS5 preconditioning should be 
preferred when computing strongly non-Boussinesq flows. 

These tests were made for Dirichlet boundary conditions 
on &2, which is the case of the velocity components. For the 
temperature field, mixed boundary conditions of Dirichlet 
type on two sides and Neumann type on two other sides 
were considered. In this case, HA-type-preconditioning with 
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L, formulation (formulation of Laplacian as in (26)) was 
only tested and was found almost insensitive to the type of 
boundary conditions investigated. 

So far, we have discussed only the preconditioning 
operators which are essential to the performance of iterative 
schemes. The other important aspect is the nature of the 
iterative scheme. Several choices are possible, from the sim- 
ple Richardson iteration with fixed or variable parameter to 
more sophisticated second-order schemes such as conjugate 
residual or conjugate gradient schemes. Figure 1 shows the 
evolution of residuals and errors obtained with Richardson 
minimum residual (PMR), conjugate residual (PCR), and 
conjugate gradient (PCG), when used in conjunction with 

a 0.00 , 

-14.0,$ 5.00 10.00 15.00 20.00 
Iterations 

-4.0 - 

2 -6.0 - 

b 
w -8.0 - 

FIG. 1. Evolution of log(residual) (a) and of log(error) (b) with 
iteration number; L = M= 32; variable coefficient test problem given by 
Eqs. (26x32); test function isf(x, z) = sin(2rrx + n/4) sin(2lrz + n/4). 

H,,, preconditioning and L, formulation (formulation of 
Laplacian as in (27)). The test function is f(x, z) = 
sin(2nx + 7c/4) sin(2nz + n/4). The scalar fields a(x, z) and 
1(x, z) are given by Eqs. (26)-(32). In view of the figure, it 
appears the two second-order schemes perform much better 
than the first-order scheme PMR at the same cost per itera- 
tion. Since the PCR scheme achieves convergence even for 
non-symmetric definite matrices, it was therefore chosen in 
most computations. 

5. SOLUTION OF STOKES PROBLEM 

Equations (lSk(20) constitute a Stokes problem 
coupling velocity and pressure fields at time level (n + 1). 
Eliminating the velocity components between these equa- 
tions gives an equation for the pressure field which reads 

(V.L,‘V)n=s, (31) 

or 

(32) 

depending on the formulation used for the Helmholtz 
equation for the velocity components. The left-hand sides of 
Eq. (3 1) or (32) define generalized Uzawa operators which 
are noted @i and 9&. 

The discrete system of equations depends on the choice of 
the collocation grids for the velocity components u and w  
and for the pressure field 17. The choice of these grids 
corresponds to a choice of polynomial space for each 
corresponding variable, noted Vu, VW, Vfl, respectively. 
The gradient operator for pressure, noted Y, is thus defined 
as a linear operator from ?$, into “y; x VW, whereas the 
divergence operator for the velocity, noted 9, takes 
“y;, x “ylv into -y^n. The Uzawa operators %i and eZ thus 
read 

or 

respectively. It is well known that if Vu = VW= 
*y^,= P,(x)@ P,,,,(z), where L and M are the maximum 
degree of interpolating polynomials in directions x and z, 
respectively, the Uzawa operator suffers from spurious 
pressure modes, which were first identified by Morchoisne 
[26]. The remedy to this problem is to choose a polynomial 
space %$ smaller than those for the velocity components, 
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which amounts to the use of a staggered grid algorithm. The 
first staggered grid algorithm proposed in [27] still suffers 
from one spurious mode for the pressure and a three-grid 
algorithm was then proposed by Bernardi and Maday [28] 
which is free of spurious modes except for the constant 
pressure mode. In this algorithm, the two velocity com- 
ponents are not defined at the same collocation points, 
which thus requires the inversion of two different Helmholtz 
operators. This was done in [29] for the Boussinesq 
equations, but the extension of the algorithm to the 
non-Boussinesq case requires a lot of programming. 

In order to simplify the programming in the non- 
Boussinesq context we follow the method proposed in 
[30], in which the two velocity components belong to 
PL(x)@P,(z) and are defined at the corresponding 
Gauss-Lobatto points (xi, z,), 0 d i d L, 0 d j d M. 
Choosing Yfl = P, ~ Z(x) @ P, _ *(z) allows one to eliminate 
all spurious pressure modes. There remains the choice of the 
collocation points to define the pressure field and to 
collocate the continuity equation. The choice that was made 
in [30] is the (L - 1) x (M- 1) Gauss points which are the 
roots of T,- ,(x) T,_ i (z/A). This choice results in four 
matrix multiples to evaluate the gradient or divergence 
operators. This number can be reduced to two by choosing 
to define the pressure field and to collocate the continuity 
equation at the internal Gauss-Lobatto points (xi, z,), 
lfi<L-l,l<j<M-1. 

For obvious reasons, the inversion of (3 1) or (32) must be 
carried out iteratively and the same questions as those 
raised in the previous paragraph arise, i.e., choice of an 
iterative scheme and choice of a good preconditioner. It 
must be kept in mind that in practical computations, the 
coefficient 1 of the Helmholtz equations which varies like 
l/At is very large since, as we have already said, the time- 
step At is limited by stability criteria due to the explicit 
discretization of the convective terms. The rather severe 
stability criteria met in actual computations result in values 
of II, such that the spectrum of the Uzawa operator has the 
same magnitude as the spectrum of the second-order 
differentiation operator and the iterative inversion of 
the Uzawa operator thus necessitates a very efficient 
preconditioner. 

We have chosen to use the Uzawa operator corre- 
sponding to the constant coefficient case as preconditioner. 
For either choice of Helmholtz approximation, these precon- 
ditioners read U, = 9H,‘Y and U, = GSH;‘( l/p(x, z))$?$. 
These operators are explicitly built by letting the pressure 
field span the basis associated with the internal Gauss 
points (x;,z,), 1 <i<L-1, 1 <j<M--1, thus generating 
a matrix of order (L - 1) x (M- 1). The rank of this matrix 
is (L - 1) x (M - 1) - 1 and its inversion is carried out 
by direct Gauss elimination after regularization, which 
amounts to fixing the pressure increment in one point. The 
inverse matrix is used to calculate the pressure increment 

during the iterations. The cost of the preconditioning is 
thus 2((L - 1) x (M - 1))2 per iteration. Each iteration 
also requires the evaluation of the residual which is done 
in 4LM(L + M)( 1 + ix nit) operations with i = 1 or 2, 
depending on the choice Li and nit is the number of 
iterations for the Helmholtz problems. In practical com- 
putations, where nit N 7, the preconditioning cost is thus 
one to two times larger than the cost of computing the 
residual, depending on each formulation, which makes 
U;‘@, approximately one and one-half times more 
expensive per iteration than U; ’ a2. 

The efficiency of this preconditioning is shown in 
Table IV, which presents the condition number of U ; ‘a, 
and U; ‘Q2 for the test problem corresponding to 
Eqs. (26)-(32). This table shows that for small values of cr, 
the condition number of U; ‘Q1 is much better than that of 
U;%Yl, the inverse being true for large values of 4. This is 
so because the condition number of U.~%!J~ strongly 
depends on the spatial inhomogeneity of 2(x, z)/a(x, z) 
which varies more than 2(x, z) or a(x, z) alone, due to the 
variations of physical properties of air with temperature. 
These conclusions might therefore not be true for other 
types of variable coefficient problems. On the other hand, 
the condition number of U ; I&, depends very little on 0 and 
this formulation of the Uzawa operator would likely apply 
to a large class of problems. 

As for the Helmholtz equations, three types of iteratives 
schemes were tried and a PCR iterative scheme was finally 
retained for the same reasons as described in the previous 
paragraph. Figure 2 shows the evolution of the residuals 
and errors of the continuity equation for two values of E and 
each type of approximation. It is seen that, for the test 
problem considered (which corresponds to a large value of 
e), the convergence rate of formulation U ; ‘%i is always 
smaller than that of formulation U;$&, the difference 
increasing with increasing E. The conclusion is that for small 
values of E, formulation U; ‘%& should be preferred despite 
its larger condition number since the cost per iteration is 
about one and one-half times smaller, whereas for larger 
values of E, both formulations are almost equivalent when 
the cost per iteration is taken into account. These tests were 

TABLE IV 

Condition Numbers; L = M = 32 

E=0.3 E = 0.6 

0 iIJ;%, u;‘+Y* U,‘91, lJ,‘ql, 

1om2 1.616 1.001 3.093 1.002 
10 1.615 1.385 3.090 2.165 
lo2 1.672 1.933 3.067 4.568 
lo4 1.728 2.711 3.375 9.782 
lo6 1.829 2.941 3.852 11.88 
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performed for L = M = 32. For large values of E and larger 
spatial resolutions we have retained the U ; %i formulation 
because of the fact that its condition number is almost 
independent of the time-step and spatial resolution. 

In the computations of time-periodic solutions which are 
reported below, the pressure at a previous time level was 
used to provide the initial guess at the current time level. 
Thus, for values of E up to 0.3, at most one to two iterations 
of U ; %, or two to three iterations of UT I%* were required 
per time step to bring the error of the continuity equation 
down to lo-’ in absolute value. For the larger values of E 
that were considered (-0.6) and formulation U;-‘%, the 
number of outer iterations for the Uzawa operator was at 
most three, the number of inner iterations (iterations for the 
Helmholtz equations for the velocity components) being 
less than seven. Note also that, for transient solutions, 
viscosity depends on time through dependence of tem- 
perature on time. U,-type of preconditioning was then also 
periodically reconstructed, typically every 1000 to 2000 
timesteps. The frequency of the update of the preconditioner 
only influences the rate of convergence of the iterative inver- 
sion of the Uzawa operator and not the solution which is 
produced, provided of course that the residual is decreased 
enough. 

6. TREATMENT OF dp/dt AND P 

As we have already said, within each time step, tem- 
perature equation is solved first, giving the new temperature 
field at time level n + 1. The thermodynamic properties ,LP + ’ 
and PC”+’ are then obtained from Sutherland laws. The 
computation of p”+ ’ and of the source term S>+’ of the 
continuity equation require the evaluation of dP/dt and is, 
which are discussed below. 

6.1. Computation of dF’/dt 

Evaluation of dP/dt is done through the use of Eq. (1 l), 
which simply states that, in a cavity with impervious walls, 
the variation in time of P is only governed by the energy flux 
at the boundaries. The integrals in (11) can be evaluated 
exactly after obtaining the spectral coefficients of c?T/dx and 
computation of dP/dt should not in principle pose any 
difficulty. In particular, when computing a steady state 
solution, dF/dt should tend to zero as time tends to infinity. 
This follows from the fact that, at steady state, energy con- 
servation should result in an exact cancellation of the energy 
fluxes at the two vertical boundaries. In the non-Boussinesq 

FIG. 2. Evolution of log(residual) and log(error) of continuity equa- 
tion for E = 0.3 (a) and E = 0.6 (b) for U, and U,-types of preconditioning; 
in (c) the evolutions of log(residual) for E = 0.6 and 0.3 and for u,- and 
uz-types of preconditioning are compared. 
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case exact cancellation is not warranted in contrast to the 
Boussinesq case, where it is trivially obtained by symmetry. 
Due to truncation errors, dP/dt is thus not really zero in 
actual computations even though steady state is attained. In 
fact, dP/dt is a measure of the truncation error of the tem- 
perature field and should tend to zero as spatial discretiza- 
tion is increased. The absolute value of dp/dt is, however, 
not very meaningful by itself and it is clear from (11) that a 
relative measure of the error is obtained by scaling the dif- 
ference of heat fluxes at the boundaries with the mean value 
of Nusselt number. This quantity is reported in Table V for 
one test case and, as expected, tends to zero as spatial 
resolution increases. 

6.2. Computation of P 

Since dP/dt is in principle known at each time step, this 
could be used to compute P at time n + 1, by integration of 
this equation starting from the initial value of P at time 
n = 0. For several reasons it seems preferable not to do so. 
One reason is linked to the accuracy of this time integration, 
but the major reason is that, as just stated above, dP/dt is 
obtained from a discretized form of the temperature equa- 
tion which involves truncation errors. In particular, since 
dP/dt does not tend to zero for steady state unless sufficient 
resolution is used, P would slowly drift in time and possibly 
be prevented from reaching any steady state even though 
one exists. Thus, whenever this is possible, it seems 
preferable to obtain P from other constraints imposed on 
the solution directly. One such constraint for our problem, 
since the mass flux at the boundary is zero, is the conserva- 
tion of the mass initially contained within the cavity. The 
equation of state can be written p = P/T and integrated over 
the fluid domain to give P = ja p/In l/T or 

(35) 

where M, is the initial mass of gas within the cavity. Here 
again the integral in (35) can be exactly evaluated after 
computation of the spectral coefficients of l/T(x, z). 

Several choices are possible for M,, depending on the 
way the heating was applied. Suppose that the cavity is 
initially at T,, B, and that the walls are heated and cooled 
symmetrically, i.e., the temperature of the hot wall is raised 

TABLE V 

dp/dt Scaled by mean Nusselt Number at Steady State for 
(Ra = lo-‘, E = 0.6) 

L=M= 6 8 12 16 20 24 32 

to T= 1 + E and that of the cold wall is decreased to 
T= 1 - E. In that case, with our choice of reference quan- 
tities, M, = 1. Another possibility that is often used in the 
experiments is that, starting at room temperature T, and 
pressure P,, only one wall is heated up to T2, the other 
being kept at T,. Then it is immediate to show that 
M, = l/( 1 -E). Symmetrically, if the cavity is initially at 
(T,, PO) and the cold wall temperature is decreased to T, , 
then M, = l/( 1 + E). 

A fourth possibility is to drop the requirement of mass 
conservation and to consider instead B= 1, in which case 
p = l/T. This corresponds to a leaky cavity in which the 
mean pressure inside the cavity remains equal to the mean 
pressure outside the cavity. This possibility is likely to be 
particularly true for natural convection experiments with 
gases, where the time scales are often very long, giving much 
time for the inner and outer pressure to equalize if one does 
not make particular effort to built a leakproof cavity. 
Numerical experiments show that, in the first case con- 
sidered above (when M, = 1 ), P is always smaller than 1. So 
the “leaky” cavity, in fact, corresponds to a cavity with a 
total mass larger than 1, which means that the cavity has 
filled up, compared to the reference state M, = 1. 

We will show on an example in Section 8.2 that the criti- 
cal Ra value corresponding to transition to unsteadiness in 
the cavity of aspect ratio 8 that was studied is in fact very 
sensitive to this value of M, even for small E. 

6.3. Overall Time-Stepping Scheme 

Given the solution up to time level n At, the solution at 
time level (n + 1) At is obtained in the following way: 

l Determination of temperature field T”+’ after com- 
putation of source term S, (Eq. (21)) and inversion of ( 17). 

l Determination of thermophysical properties $’ + r and 
icn + ’ from Sutherland laws. 

l Computation of (dP/dt)” + ’ from ( 11) and of P from 
(35). 

l Determination of p”+ ’ from equation of state (8). 

l Computation of the divergence of velocity field S;+’ 
m. (23)) 

l Resolution of generalized Stokes problem. 

l Guess initial pressure field 17,. In general 17, = ~7”. 

l Computation of corresponding divergence D, = 
9L,‘(wI, + S,). 

l Compute the correcting pressure by iterative inver- 
sion of the Uzawa operator: Ii’, = % - ‘( S, - D,). 

. Obtain new pressure field l7” + ’ = l7, + ~7,. . 
l Obtain new velocity field V”+’ = LJ;‘(g17”+’ +S,). 

l Proceed to the next time step. 

581/103/2-IO 
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7. VALIDATION 

The validation of the code has been carried out in several 
ways. First, we have tested that it was immaterial to choose 
the internal Gauss-Lobatto points to define the pressure 
field IZ, instead of the more classical Gauss points. This was 
done on a Boussinesq code by comparing the results with 
those previously obtained with a three-grid algorithm. The 
test case was a cavity of vertical aspect ratio 8 with adiabatic 
top and bottom walls and with both codes it was possible to 
bound the critical value of the Rayleigh number corre- 
sponding to transition to unsteadiness between 3 x lo5 and 
3.2 x 10’. This confirms the critical value previously 
obtained in [31], in which the assumption of Hopf bifurca- 
tion was used to produce an accurate value of Ra,. equal to 
3.1 x 105. 

Concerning the non-Boussinesq code, it was first tested in 
the limit of small E to compare the results with those 
produced by a Boussinesq code (E = 0). In this case, the pre- 
conditioner used for the Helmholtz equations is H, (see 
Section 3) which allows us to obtain the convergence in one 
iteration only. Such a comparison is shown in Fig. 3, where 
two solutions corresponding to the same Rayleigh number 
but different values of E (E = 0 and E = 0.001) are displayed 
in the form of temperature, stream function, and pressure 
iso-contours. (In the non-Boussinesq case, since at steady 
state dp/dt = 0, it is possible to introduce a stream-function 
II/ such that p V = V x $ k, where k is the unit vector normal 
to the XOZ plane. II/ is then obtained from the solution of 

0.95 j I I llil, 
102 103 

I I/II, 
104 7 

RCI ‘” 
106 

FIG. 4. Evolution of &ip, with Ba for different values of E; ( q ), 
E = 0.2; ( 0), E = 0.4; ( l ), E = 0.6. Full lines are from [ 18 1. 

V’$ = apw/dx - apu/az). As can be seen, these two solu- 
tions are in extremely good quantitative agreement. 

For larger values of a, the tests were performed against 
the results obtained by Chenoweth and Paolucci [ 183 con- 
cerning the evolution of p/PC, where P,. is the mean pressure 
of the variable property conduction solution found for 
u = w  = 0. This comparison is carried out in Fig. 4 and it 
shows that both sets of results are in very good agreement. 
Likewise, comparison of global Nusselt numbers at steady 
state (not shown) also shows very good agreement. 

8. TRANSITION TO UNSTEADINESS 
IN A TALL CAVITY 

FIG. 3. Isocontours of temperature (left), stream-function (center), 
and pressure (right) for the Boussinesq case (a) and for E = 0.001 (b); 
Ba=3 x 105, A=8; temperature isovalues are: -0.5 (0.1) 0.5; stream 
function isovalues arc: 0.0002, 0.001, 0.002, 0.003, 0.004, 0.005, 0.0057; 
pressure isovalues are: -1400, -1200, -1000, -800, -600, -400, 
- 200,0,40. 

It was thus decided to investigate the influence of variable 
properties on the critical value of Rayleigh number corre- 
sponding to the onset of unsteadiness in a vertical differen- 
tially heated cavity of aspect ratio 8. The methodology that 
was classically used was to integrate long enough the time- 
dependent equations with given values of Ra and E to be 
able to determine the nature (steady or unsteady) of the 
asymptotic solution. Let us recall here that, in the 
Boussinesq case and for an aspect ratio of 8, stable steady 
state 2D solutions are found up to a critical Ra value close 
to 3.1 x 105. For smaller values of Ra the flow develops 
smoothly from conduction solution into the boundary layer 
regime. In particular, in the Boussinesq case, the instability 
of the conduction regime can only be found in cavities of 
aspect ratio larger than a critical value between 11 and 12. 

Some of Chenoweth and Paolucci’s results suggest that 
there might be pronounced effects of the temperature dif- 
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FIG. 5. Solution for Ba = 105; A = 8; E = 0.6. From left to right: Tem- 
perature 0.4 (0.1) 1.6, density 0.7 (0.2) 2.3, pressure I7 and streamfunction 
0.001 (0.001) 0.008. 
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FIG. 6. (a) Time trace of temperature at location (x, z/A) = (-0.71, 
0.71) for Ra = 3 x 105; A = 8; E = 0.3; (L, M) = (24,72). Time integration 
performed with At= 1.75 x lo-*. (b) Concatenation of time traces of 
temperature at monitoring location for three different spatial resolutions: 
up to t N 88, (L, M) = (24,72); from 88 to = 140, (L, M) = (32,96); after 
140, (L, A4) = (20,64). Times at which spatial resolution was changed are 
indicated by thick marks on the inner side of the time axis. 

ference on the flow regimes. In particular, the temperature 
fields corresponding to values of Ra = 1 x 105, E = 0.6 [ 18, 
Figs. lob and c] show very irregular isotherms that the 
authors attribute to the cross-roll multicellular instability. 
They also claim that the corresponding solutions are steady. 
The solution for an aspect ratio of 8 was computed and its 
spatial structure is displayed in Fig. 5 in the form of isotem- 
perature and streamfunction contours. The accuracy of that 
solution was checked with two different spatial resolutions 
(L = 20, M = 64) and (L = 24, M = 72). These plots do not 
obviously show the wiggles that are found in the corre- 
sponding solution in Chenoweth and Paolucci [IS]. A 
possible explanation would be the existence of multiple 
solutions depending on initial condition. 

8.1. hzfluence of E 

For the same configuration (cavity of A = 8 and adiabatic 
top and bottom walls) we then have determined the limits 
between steady and unsteady solutions for different values 
of E. As an example, Fig. 6a shows that the asymptotic solu- 
tion corresponding to a Ra value of 3 x lo5 and an s-value 
of 0.3 is time periodic. This was obtained with spatial resolu- 
tion (L, M) = (24, 72). To show that spatial. resolution is 
adequate the following test was performed. The fields of the 
last two time steps of the previous time sequence were 

FIG. 7. Instantaneous fluctuating fields: from left to right: Tem- 
perature, u-velocity, w-velocity, and density; Ba = 3 x 105; A = 8; E = 0.6. 
Isovalue ranges correspond to the greyscale shown; smallest positive and 
negative values around zero are in white; the other isovalue ranges are 
symmetrical with respect to zero. 
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FIG. 8. Stability region: A =8; adiabatic top and bottom walls; 

(0) unsteady solutions; (0) steady solutions. 

extended by polynomial interpolation to (L, M) = (32,96). 
Using these interpolated fields as the initial condition, time 
integration was then resumed for 3000 time steps with the 
same value of the time step. The location of the monitoring 
point was the same as in the previous time sequence. Spatial 
resolution was then decreased to (L, M) = (20, 64) and time 

integration was carried out for 5000 time steps with again 
the same value of the time step. Figure 6b shows the con- 
catenation of the temperature traces at the monitoring point 
for the three different spatial resolutions. It can be seen that 
the increase of spatial resolution from (24, 72) to (32, 96) 
can hardly be noticed on the time trace and that even the 
smaller resolution, except for the startup which shows up on 
the trace, has a negligible effect on the amplitude of the fluc- 
tuation. We thus feel confident that the solutions computed 
with (L, M) = (24, 72) are very accurate and most of the 
solutions were therefore obtained with that resolution. 

Once the asymptotic time-periodic solution is reached it 
is possible to compute the time-averaged fields from a sim- 
ple arithmetic mean and to obtain the fields of fluctuating 
quantities such as temperature, velocity components and 
density. Typical instantaneous fields for the corresponding 
solution are shown in Fig. 7. These fluctuating fields are 
very similar to those found in the Boussinesq case for small 
supercritical values of the Rayleigh number. One notable 
difference though is that they break the centro-symmetry 
property, the fluctuations being of larger amplitude in the 
ascending boundary layer along the hot wall than along the 
cold wall. What is also particularly noteworthy is the close 
resemblance between the temperature fluctuations 7 and 
the density fluctuations fi since these fields are obviously 
linked by a relationship of the form pp+ Fj? = 0 for small 
supercritical values of the Rayleigh number, where T and p 
stand for the time-averaged fields. 

FIG. 9. Instantaneous fluctuating temperature fields. From left to right: Ra = 3.2 x IO’, E =O; Ra = 3.3 x 105, E =O.l; Ra = 3.2 x lo’, E =0.2; 
Ra = 2.8 x lo’, E = 0.3; Ra = 2.5 x 105, E = 0.4; Ra = 2.5 x 105, E = 0.5; Ra = 2.0 x 105, E = 0.6. Isovalue ranges correspond to the greyscale shown; smallest 
positive and negative values around zero are in white; the other isovalue ranges are symmetrical with respect to zero. 
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Similar determinations of upper and lower bounds of the 
critical Rayleigh value were carried out for other values of 
E. The results are shown in Fig. 8 in the Ra - E plane for 
values of E up to 0.6. Increasing E from 0 to 0.6 decreases the 
critical value of the Rayleigh number from 3.1 x IO5 to less 
than 2 x 10’. It should also be noted that the solution 
corresponding to a value of E of 0.1 is found slightly more 
stable than the Boussinesq solution. Computing all these 
solutions has required about 50 h of VP-200’ and we have 
not undertaken to determine accurately the critical values 
for obvious reasons. Increasing the value of E also influences 
the structure of the unsteady solution. First, as already 
noted, it breaks the centro-symmetry property and solu- 
tions become increasingly dissymmetrical with increasing E. 
The boundary layer on the heated side becomes thicker than 
that on the cold side, which agrees with Chenoweth and 
Paolucci’s results. Figure 9 shows several instantaneous 
fluctuating temperature fields corresponding to the time- 
periodic solutions found for increasing values of E. As was 
previously shown in the Boussinesq case, the fluctuating 
temperature field is made of several wavelengths of variable 
length which circulate around the cavity undergoing 
successive amplification and damping. As can be seen from 
Fig. 9, these sequences of amplification and damping 
become increasingly dissymmetrical with increasing E, and 
at the larger values of E, one even reaches a configuration in 
which fluctuations are almost constantly amplified in the 
upward boundary layer and damped as they travel 
downstream along the cold wall. On the other hand, Fig. 9a 
shows that the time-periodic solution which appears at criti- 
cality in the Boussinesq case is made of 11 wavelengths. (We 
define one wavelength as being made of two consecutive 
structures of alternate sign. Note also that an odd number 
of structures is still compatible with the so-called centro- 
symmetry property of the solution.) Figures 9b and c show 
that the solution obtained close to criticality for small E is 
also made of 11 wavelengths, although this solution breaks 
the centro-symmetry property. The fact that the time- 
periodic solution found at onset of unsteadiness in a cavity 
of aspect ratio 8 is made of 11 circulating structures thus 
seems to be a robust property with respect to imperfections 
which break the centro-symmetry of the solutions. 

8.2. Influence of Initial Mass 

As was already discussed in Section 6, the same final 
configuration can be reached from several initial states and 

only differs through the mass M, of fluid initially contained 
in the cavity. Even though any value of M, could be in 
principle considered, we have seen that the most logical 
assumptions are to consider either M, = 1, M, = 1/( 1 - E) 

’ The Fujitsu VP-200 is a 500 Mflops-class machine. 

or M, = l/( 1 + E) corresponding to conservation of mass for 
an isothermal initial state at (To, PO), (T, , P,), or ( TZ, PO), 
respectively. The fourth possibility is simply to set P = 1, in 
which case the mass M in the asymptotic state is not known 
a priori and is given by jn 1/T. 

For the purpose of comparison with experiments and in 
view of the uncertainty in the actual operating conditions, 
one should therefore investigate the influence of this 
parameter on the onset of unsteady convection. From 
preceding considerations, it seems logical to limit the range 
of values of M, from l/( 1 + E) to l/( 1 -E). We have only 
considered the case of a small E value of 0.1 and an aspect 
ratio 8 cavity, and one should keep in mind that larger 
values of E should have an increasing effect. For MO = 1, it 
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FIG. 10. Time trace of temperature at location (x, z/A)=( -0.71, 
0.71) for (A =8, e=O.l, M,,= l/(1 -E)): (a, top) Ra=3.1 x IO’, develop- 
ment of unsteadiness; (b, middle) Ra = 2.4 x lo’, damped oscillations that 
will utimately yield a steady solution; (c, bottom) Ra=2.6 x 10s, 
asymptotic solution in time is unsteady. Time integrations performed with 
At = 2.5 x lo-’ and (L, M) = (24,72). 
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was shown in the previous section that the critical value is 
bound between 3.1 x lo5 and 3.3 x 105. Starting from the 
steady state solution found for 3.1 x lo5 and changing the 
value of M, to l/( 1 - E) yields an unsteady solution as can 
be seen from Fig. lOa, showing that increasing the density 
has a destabilizing effect. For that value of M,, unsteady 
solutions are found for values of Ra down to 2.6 x 10’ 
(Fig. lOc), whereas the solution for Ra = 2.4 x 10’ remains 
steady (Fig. lob). On the other hand, values of M, smaller 
than one have a stabilizing influence on the solution. For 
M, = l/( 1 + E) and a Ra value of 3.3 x 105, integration using 
the corresponding solution for M,= 1 as initial condition 
results in a steady solution after sufficiently long time 
integration can be seen from Fig. 1 la. For this value of M, 
one has to increase the Ra value to 4 x lo5 (Fig. 1 lb) to see 
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FIG. 11. Time trace of temperature at location (x, z/A)= 
(-0.71,0.71) for (A=8, &=O.l, Me= l/(1 +E)): (a, top) Ra=3.3 x lo’, 
return to steady state; (b, middle) Ra =4.0 x lo’, unsteady solution 
developing in time; (c. bottom) Ra = 3.8 x lo’, damped oscillations that 
will utimately yield a steady solution. Time integrations performed with 
At = 2.5 x 10m2 and (L, M) = (24,72). 

an unsteady solution appear, the solution for 3.8 x 10’ being 
steady (Fig. 1 lc). 

The third possibility we have examined, P = 1, has a very 
minor effect on the solution. This is so because the mean 
pressure P corresponding to M, = 1 is about 0.992 with 
small fluctuations in time. Setting P to 1 thus only changes 
the density by less than 1 %, which is much smaller that the 
approximate 10 % change for the two other possibilities. 

Increasing the value of M, from l/( 1 + E) to l/( 1 - E) thus 
decreases the critical value of Ra from 3.9 x lo5 to 2.5 x lo5 
approximately. This large difference is, however, fully 
consistent with the definition of the Rayleigh number as 
(pi2&gLi/,u01c0) which shows that the effective Rayleigh 
numbers corresponding to values of M, equal I/( 1 + E) or 
1/(1-~)arerespectively(1/1+~))~or(1/(1-~))~timesthe 
nominal value of Ra. 

9. CONCLUSION 

We have proposed a pseudo-spectral algorithm to com- 
pute non-Boussinesq natural convection in a cavity under 
large temperature differences. The results we have obtained 
shows that the algorithm is effective since we have been able 
to reliably and accurately bound the critical value of the 
Rayleigh number corresponding to the onset of unsteadi- 
ness for a large range of temperature differences. In the case 
considered, the temperature difference has a significant 
effect on the value of the Rayleigh number at which 
unsteadiness sets in and on the structure of the unsteady 
solution. 

ACKNOWLEDGMENTS 

This work was supported by DRET under Contract 88/169. Computing 
time on the VP200 at CIRCE was provided by “Direction Scientitique 
du SPI.” 

1. P. Haldenwang, These d’Etat, University of Provence, Dec. 1984 
(unpublished). 

2. P. Le Quere and T. Alziary de Roquefort, J. Comput. Phys. 57, 210 
(1985). 

3. J. M. Vanel, R. Peyret, and P. Bontoux, in Numer. Methods Fluid Dyn. 
II, edited by Moreton and Baines (Clarendon Press, Oxford, 1986), 
p. 477. 

4. D. D. Gray and A. Giorgini, Inr. J. Heat Mass Transf: 19, 545 (1976). 

5. E. A. Spiegel and G. Veronis, Astrophys. J. 131, 442 (1960). 
6. R. K. McGregor and A. F. Emery, J. Heat Trunsf 391 (1969). 
7. V. I. Polezhaev, Fluid Dyn. (USSR) 2, 70 (1967). 

REFERENCES 

8. L. W. Spradley and S. W. Churchill, J. Fluid Mech. 70, 705 (1975) 

9. E. Graham, J. Fluid Mech. 70, 689 (1975). 

10. J. Patterson and J. Imberger, J. Fluid Mech. 100, 65 (1980). 



PSEUDO-SPECTRAL NON-BOUSSINESQ CONVECTION 335 

11. E. Leonardi and J. A. Reizes, in Num. Methods in Thermal Problems, 
edited by Lewis and Morgan (Pineridge Press, Swansea, UK, 1979), 
p. 297. 

12. E. Leonardi and J. A. Reizes, in Num. Methods in Heaf Tran$, edited 
by Lewis, Morgan, and Zienkiewicz (Wiley, New York, 1981), p. 387. 

13. R. G. Rehm and H. R. Baum, J. Res. Nat. Bur. Stand. 83, 297 (1978). 

14. C. K. Forester and A. F. Emery, J. Comput. Phys. 10,487 (1972). 

15. D. 0. Gough, J. Atmos. Sci. 26,448 (1969). 

16. S. Paolucci, Sandia National Lab. Report SAND 82-8257, 1982 
(unpublished). 

17. P. Le Quere, J. A. C. Humphrey, and F S. Sherman, Num. Heat Tramf: 
4, 249 (1981). 

18. D. R. Chenoweth and S. Paolucci, J. Fluid Mech. 169, 173 (1986). 

19. S. Paolucci and D. R. Chenoweth, J. Fluid Mech. 201, 379 (1989). 

20. Roux (Ed.), Notes on Numerical Fluid Mechanics, Vol. 27 (Vieweg, 
Munich, 1990), p. 227. 

21. J. Frohlich and R. Peyret, Compuier Methods in Applied Mechanics and 
Engineering, Vol. 80 (North-Holland, Amsterdam, 1990) p. 425. 

22. J. Frohlich, Thesis, Universiti de Nice, June 1990 (unpublished). 

23. D. Haidvogel and T. A. Zang, J. Comput. Phys. 30, 167 (1979). 

24. H. Guillard and J. A. D&id&i, Computer Methods in Applied 
Mechanics and Engineering, Vol. 80 (North-Holland, Amsterdam, 
1990), p. 305. 

25. C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral 
Methods in Fluid Dynamics (Springer-Verlag. New York, 1988). 

26. Y. Morchoisne, in 3Pme Cong. Int. Meth. Num. Ig., Paris, 1983, edited 
by P. Lascaux, p. 275. 

27. F. Montigny-Rannou and Y. Morchoisne, Int. J. Num. Meth. Fluids I, 
175 (1987). 

28. C. Bernardi and Y. Maday, Int. J. Num. Meth. Fluids 8, 537 (1988). 

29. P. Le Quirt, in Notes on Numerical Fluid Mechanics, Vol. 27, edited by 
Roux (Vieweg, Munich, 1990), p. 227. 

30. E. M. Ronquist, Ph.D. thesis, MIT, June 1988 (unpublished). 

31. P. Le Quire and T. Alziary de Roquefort, in Significant Questions in 
Buoyancy Affected Enclosure or Cavity Flows, HTD Vol. 60, (ASME 
WAM, New York, 1986), p. 29. 


